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Abstract

Our comprehension of video streams depicting human ac-
tivities is naturally multifaceted: in just a few moments, we
can grasp what is happening, identify the relevance and in-
teractions of objects in the scene, and forecast what will
happen soon, everything all at once. To endow autonomous
systems with such holistic perception, learning how to cor-
relate concepts, abstract knowledge across diverse tasks,
and leverage tasks synergies when learning novel skills is
essential. In this paper, we introduce Hier-EgoPack, a uni-
fied framework able to create a collection of task perspec-
tives that can be carried across downstream tasks and used
as a potential source of additional insights, as a backpack
of skills that a robot can carry around and use when needed.
Code: github.com/sapeirone/hier-egopack.

1. Introduction
Our daily activities are extremely complex and diverse, yet
humans have the extraordinary ability to perceive, reason,
and plan their actions almost entirely from visual inputs.
For instance, when observing someone at a kitchen counter
with a pack of flour and a jug of water, we can infer they
are kneading dough (reasoning about current activity). We
might predict that their next step will involve mixing flour
with water (reasoning about the future) to obtain the dough
(reasoning about implications), maybe with the ultimate
goal of preparing some bread (reasoning about long-range
activities). Although natural for humans, replicating this
holistic understanding in artificial intelligence remains a
major challenge. Most existing work tackles human activity
understanding via task-specific models, neglecting shared
reasoning patterns across tasks. Although multitask learn-
ing (MTL) offers some synergy, it struggles with negative
task interference and lacks flexibility for novel tasks. We
propose a paradigm shift: rather than just sharing informa-
tion, systems should abstract and reuse task-specific knowl-
edge to foster future skill learning. EgoPack [6] demon-
strated this idea for egocentric videos by learning a set of
reusable concepts from multiple support tasks to enhance
novel ones. However, egocentric videos cover a wide range
of tasks spanning diverse temporal scales, from actions last-

Figure 1. Novel task learning in egocentric vision. In the
MTL Pretraining stage, Hier-EgoPack learns a set of support tasks.
Then, the knowledge from these tasks is collected in the form of
prototypes and reused to foster the learning process of a novel task.

ing a few seconds to long-range activities.
In this paper, we introduce Hier-EgoPack, an enhanced

version of EgoPack, specifically designed to maximize pos-
itive interaction across tasks with different temporal granu-
larity, while still using a unified architecture and minimiz-
ing task-specific weights and tuning for novel task learn-
ing (Fig. 1). Our hierarchical model captures both fine and
coarse temporal patterns and introduces a novel Temporal
Distance Gated Convolution (TDGC) layer to reason over
temporal dependencies. We validate our approach on the
large-scale Ego4D [3] dataset, showing improved perfor-
mance and positive interaction between tasks knowledge.

2. Related works

Concepts Learning covers a broad range of methods that
learn an information bottleneck between the input data and
the output of a desired task. Concept Bottleneck Models
(CBM) [4] learn individual units that represent the activa-
tion of specific concepts present in the input. The concepts
taxonomy may come from domain knowledge [4], language
models [10] or obtained without any supervision [8]. Learn-
ing in the high-level concepts space may improve gener-
alization across tasks and domains [1] and produce more
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Figure 2. Overview of Hier-EgoPack. The video is processed as
a graph by the hierarchical temporal backbone Mt, shared by all
the tasks. The node embeddings from different tasks are collected
in the backpack for cross-task interaction.

interpretable models [10]. In video understanding, few
works explored post-hoc concepts-based interpretability [2]
and disentanglement of static and dynamic features in ac-
tion recognition models [7]. EgoPack [6] extends concepts-
based learning to video understanding tasks that require dif-
ferent reasoning skills, collecting a set of concepts that en-
code how each task would “perceive” the same action from
its specific “perspective”.

3. Method

We address a cross-task interaction setting, in which a
model is trained to reuse previously acquired knowledge
from a set of support tasks to foster the learning process
of any novel task. This work introduces Hier-EgoPack, a
unified architecture able to model tasks with different tem-
poral granularity and strong sense of time, i.e. reasoning on
the order of events in a video.

Novel task learning with previous knowledge. A task T
in egocentric vision is defined as a mapping between a
video V and an output space Y . In classifications tasks, e.g.,
Action Recognition, this mapping assigns a trimmed video
segment vi to its corresponding label yi ∈ Y . Differently,

action localization tasks process the entire video V and pre-
dict a set of temporally grounded activities, each described
by its start and end timestamps and the corresponding action
label: T : V → {(tsi , tei , yi)}i.

Our approach streamlines the processing for differ-
ent tasks by feeding the temporal backbone Mt with
untrimmed input videos and aligning the output to the
downstream task at a later stage, which is a crucial design
choice to enable knowledge sharing across different tasks.
We follow a two-stages training process:
• Stage 1: multi-task pretraining on a set of K support

tasks to learn generalizable representations;
• Stage 2: novel task learning, in which the model adapts

to a novel task TK+1 without access to support task labels.
The key idea is to capture and reuse semantic cues shared
across tasks. For example, recognizing object state changes
can inform action recognition, as actions like cutting imply
change, while others like moving may not.

3.1. A unified architecture for Video Understanding
We represent a video V as a sequence of N fixed-length
segments with associated features x = x1, . . . ,xN , ex-
tracted via a pretrained video encoder F (e.g., EgoVLP [5]).
The video can be interpreted as a temporal graph G =
(X, E ,pe), where X ∈ RN×D is a matrix of features of the
graph nodes, edge eij ∈ E connects nodes i and j if their
temporal distance is below τ and the attribute pe ∈ RN

encodes the timestamp (in seconds). Modeling videos as
graphs enables reasoning over temporal relations via mes-
sage passing and to frame multiple tasks with a unified ar-
chitecture. This architecture is built on three components:
1. a shared temporal backbone Mt, built with TDGC lay-

ers and subsampling for hierarchical temporal reasoning;
2. task-specific projection necks Nk to map node embed-

dings to the features space of task Tk;
3. task-specific heads Hk for task-specific outputs.
Let G(0) represent the initial graph of the input video V ,
where each node’s position pe is initialized to the midpoint
of the corresponding video segment. Starting from G(0), the
backbone iteratively updates the graph through L stages:

Mt : G(0) → {G(1),G(2), . . . ,G(L)},

Each stage applies TDGC layers and temporal subsampling
(mean/max pooling) to progressively enlarge the temporal
extent of the nodes. Edge connections are updated based
on scaled node timestamps (×2l at stage l). The number
of stages L is task-dependent: single-stage for fine-grained
tasks (e.g., AR, OSCC), and multi-stage for long-range tem-
poral tasks. The architecture is shown in Fig. 2.

Temporal Distance Gated Convolution (TDGC). Each
stage of the temporal backbone Mt is built as a stack of Nl

GNN layers, which we call Temporal Distance Gated Con-
volution (TDGC). These layers are designed to preserve and
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encode the temporal sequence of information, capturing the
relative past and future dependencies between nodes. More
specifically, given two nodes i and j at layer l, we compute
sij and wij as:

sij = sign(pe
(l)
[i] − pe

(l)
[j]), wij = MLP(|pe(l)[i] − pe

(l)
[j] |).

These two factors are used to re-weight the contribution of
each neighbor node j in the aggregation step, as follows:

x
′

j = MLP
(
x
(l)
j

)
= ϕ(WT

nx
(l)
j + bn),

x
(l+1)
i = WT

r x
(l)
i + mean

j∈N̄ (i)

(
sij(wij ⊙ x

′

j)
)
+ br,

where x
(l)
i are the features of the node i at layer l, N̄ (i) is

the set of neighbors of node i, Wn, Wr and bn, br are
learnable weights and biases respectively.

3.2. Task-specific components
The temporal backbone Mt is shared across all down-
stream tasks and provides task-agnostic temporal reason-
ing over streams of fixed-length video segments. Each task
Tk has its own projection neck Nk, a two-layer MLP that
maps backbone outputs to the task’s feature space: X(l)

k =
Nk

(
X(l)

)
with Nk : RD → RD. For tasks with known

temporal boundaries (e.g., AR), we align node embeddings
to task annotations:

F
(l)
k,[i] = align(X

(l)
k , si, ei) = mean

j: si<p
(l)

[j]
<ei

X
(l)
k,[j],

where F
(l)
k,[i] are the task-specific features of segment vi for

task Tk. For action localization, which operate over the full
video, alignment is unnecessary and we directly use X

(l)
k .

To solve the novel task TK+1, the naive approach would
be to finetune the model, adding new task-specific neck
NK+1 and head HK+1 and possibly updating the temporal
backbone Mt. However, this approach may forget previ-
ously acquired knowledge. Instead, we explicitly model the
perspectives of the support tasks, learned during the MTL
pre-training step, as a set of task-specific prototypes that
can be accessed by the novel task. We collect these task-
specific prototypes from videos annotated for action recog-
nition, as human actions can be seen as the common thread
behind the different tasks. We forward these action sam-
ples through the temporal backbone, align them based on
the AR annotations and project their features using the task-
specific necks Nk of each task to obtain the task-specific
features Fk, each row capturing that task’s “perspective”
on a given segment. We then aggregate features by action
label (a unique verb-noun pair) to form the prototypes set
Pk = {pk

0 ,p
k
1 , . . . ,p

k
P } ∈ RP×D for each task Tk, where

P is the number of unique verb-noun pairs and D is the fea-
ture dimension. These prototypes are frozen and serve as a

compact summary of each task’s learned representation—a
reusable knowledge base for novel tasks, like a backpack of
skills that the model can carry over.

3.3. Learning a novel task with a backpack
To solve a novel task TK+1, we pass the output graphs from
the temporal backbone through all the task-specific necks
to obtain features Xk. These features act as queries to re-
trieve the closest task prototypes in Pk via k-NN search in
the feature space. Each query and its neighboring proto-
types form a graph-like structure, where message passing is
applied using M layers of SAGE convolution to iteratively
refine the task-specific features. At each layer m, we update
the features X(m)

k,[i]:

X
(m+1)
k,[i] = W(m)

r X
(m)
k,[i] +W(m) · mean

pk
j ∈ N̄ (i)

pk
j ,

where pk
j ∈ N̄ (i) is the set of activated prototypes for

the given task, and W
(m)
r ,W(m) are learnable projections.

This refinement is applied at each backbone stage l, updat-
ing only the task features—not the prototypes—to preserve
the original learned perspectives. The final refined features
X̃

(l)
k are aligned, if needed, to produce F̃

(l)
k . We evaluate

different fusion strategies to integrate the novel task with
the perspectives gained from the previous tasks. In features-
level fusion, we average the task-specific features for the
novel task FK+1 with the refined perspectives from the pre-
vious tasks F̃k. In logits-level fusion, we keep a set of sepa-
rate heads, one for each support task, feed the features F̃k to
each head separately and sum their outputs. Intuitively, this
approach allows each task to cast a vote on the final predic-
tion, based on its perspective on the same video segment.

4. Experiments
We validate Hier-EgoPack on Ego4D [3], focusing on
five benchmarks that cover different temporal granularities.
Fine-grained tasks focus on short-term understanding of
the video, usually a few seconds long, and include: Ac-
tion Recognition (AR), Object State Change Classification
(OSCC), Point of No Return (PNR), Long Term Anticipation
(LTA). Other tasks may require both short and long term un-
derstanding of the input video. Among these, we analyze an
action localization task, i.e., Moment Queries (MQ).

Quantitative results. We show the main results in Table 1,
comparing our approach with the Ego4D baselines [3], the
task-translation framework EgoT2 [9] and EgoPack [6].

We observe that the task prototypes in Hier-EgoPack
provide a comprehensive and easy-to-access abstraction of
the model’s learned knowledge, enabling the extraction of
relevant insights tailored to the specific sample and task, ex-
hibiting superior performance.
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Figure 3. Activations consensus for different novel tasks. Activations consensus between two support tasks is defined as the percentage
of their prototypes corresponding to the same label activated by the two tasks.

Table 1. Hier-EgoPack on a set of Ego4D tasks.
AR Top-1 (%) OSCC Acc. LTA ED (↓) PNR Err. MQ mAP

Method Verb Noun (%) Verb Noun (↓) (%)

Ego4D Baselines [3] 22.18 21.55 68.22 0.746 0.789 0.62 6.03
EgoT2s [9] 23.04 23.28 72.69 0.731 0.769 0.61 N/A
EgoPack [6] 25.10 31.10 71.83 0.728 0.752 0.61 N/A

Single Task 26.93 33.50 75.22 0.728 0.752 0.62 20.2
MTL 26.31 33.90 74.79 0.730 0.754 0.62 18.5

Hier-EgoPack 27.30 34.65 75.60 0.725 0.741 0.61 21.0

Single Task uses the same hierarchical GNN-based architecture to model all tasks.
Multi-Task Learning (MTL) uses hard parameter sharing to jointly learn all tasks.

Activation consensus across tasks. We analyze how Hier-
EgoPack leverages knowledge abstractions from the sup-
port tasks. Specifically, we visualize the activated proto-
types (i.e. the set of prototypes each support task looks at)
during the interaction process of Hier-EgoPack across dif-
ferent novel tasks and quantify task activation consensus,
i.e., the degree to which different tasks activate prototypes
corresponding to the same label for a given sample of the
novel task. A low consensus suggests that the support tasks
capture more diverse cues, i.e. different tasks activate differ-
ent prototypes, whereas a high consensus indicates that acti-
vations are more coherent across tasks. Fine-grained tasks,
e.g., AR, have higher average consensus compared to MQ
(Fig. 3). We attribute this difference to the implementation
of the interaction process for these two groups of tasks. In
fine-grained tasks, the interaction process is applied on the
sample-level aligned features, while we use node-level fea-
tures in MQ which may correspond to background or poorly
discriminating regions of the video. However, the low aver-
age activations consensus and high diversity in prototypes’
activations across tasks shows how Hier-EgoPack is effec-
tively integrating different perspectives for the MQ task.

5. Conclusions
We present Hier-EgoPack, an holistic video understand-
ing model that enables knowledge sharing between egocen-
tric vision tasks with different temporal granularity. Our
work emphasizes the importance of prior knowledge and
task perspectives in learning novel tasks, focusing on how
task-specific knowledge is represented and utilized. More-
over, through our proposed unified architecture, we demon-

strate that leveraging diverse task perspectives in egocentric
vision, even across varying temporal granularity, leads to
more comprehensive and human-like video understanding.
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